Vorhersage von Smoothing Techniques Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Bereichen von Anwendungen im Abschnitt MENU auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die zeitlich geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken, wenn richtig angewandt, zeigt deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge beginnend mit der linken oberen Ecke und den Parametern ein, und klicken Sie dann auf die Schaltfläche Berechnen, um eine Prognose für eine Periode zu erhalten. Blank Boxen sind nicht in den Berechnungen, sondern Nullen enthalten. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Daten-Matrix zu bewegen, verwenden Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Untersuchung seines Graphen aufgezeigt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Condition Prognose Modellierung. Moving Averages: Gleitende Durchschnitte zählen zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentialglättung: Dies ist ein sehr populäres Schema, um eine geglättete Zeitreihe zu erzeugen. Während in den gleitenden Durchschnitten die bisherigen Beobachtungen gleich gewichtet werden, erhält die exponentielle Glättung exponentiell abnehmende Gewichte, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen sind relativ mehr Gewicht in der Prognose als die älteren Beobachtungen gegeben. Double Exponential Smoothing ist besser im Umgang mit Trends. Triple Exponential Smoothing ist besser im Umgang mit Parabeltrends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstanten a. Entspricht in etwa einem einfachen gleitenden Durchschnitt der Länge (d. h. Periode) n, wobei a und n durch a 2 (n1) OR n (2 - a) a verknüpft sind. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19 Tage gleitenden Durchschnitt entsprechen. Und ein 40 Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt mit einer Glättungskonstanten gleich 0,04878 entsprechen. Holts Lineare Exponentialglättung: Angenommen, die Zeitreihe ist nicht saisonal, sondern zeigt Trend. Holts-Methode schätzt sowohl das aktuelle Niveau als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein Spezialfall der exponentiellen Glättung ist, indem die Periode des gleitenden Mittelwertes auf den ganzzahligen Teil von (2-Alpha) Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft effektiv. Man kann jedoch eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten mittleren Absolutfehler (MA Error). Wie man mehrere Glättungsmethoden miteinander vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognosetechnik gibt, besteht der am weitesten verbreitete Ansatz darin, einen visuellen Vergleich mehrerer Prognosen zu verwenden, um deren Genauigkeit zu beurteilen und zwischen den verschiedenen Prognosemethoden zu wählen. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognoseverfahren aufzeichnen und damit einen visuellen Vergleich erleichtern. Sie können die Vergangenheitsvorhersage von Smoothing Techniques JavaScript verwenden, um die letzten Prognosewerte basierend auf Glättungstechniken zu erhalten, die nur einen einzigen Parameter verwenden. Holt - und Winters-Methoden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuch und Fehler für die Parameter auszuwählen. Die einzelne exponentielle Glättung betont die kurzreichweite Perspektive, die sie den Pegel auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die auf eine Linie der kleinsten Quadrate zu den historischen Daten (oder transformierten historischen Daten) passt, repräsentiert die lange Reichweite, die auf dem Grundtrend konditioniert ist. Holts lineare exponentielle Glättung erfasst Informationen über die jüngsten Trend. Die Parameter im Holts-Modell sind Ebenenparameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist, und der Trends-Parameter sollte erhöht werden, wenn die jüngste Trendrichtung durch das Kausale beeinflusst wird. Kurzfristige Prognose: Beachten Sie, dass jeder JavaScript auf dieser Seite eine einstufige Prognose zur Verfügung stellt. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert an das Ende der Zeitreihendaten und klicken Sie dann auf die Schaltfläche Berechnen. Sie können diesen Vorgang für ein paar Mal wiederholen, um die benötigten kurzfristigen Prognosen zu erhalten. Der einfachste Ansatz wäre, den Durchschnitt von Januar bis März zu nutzen und zu verwenden, um den Umsatz von April8217 zu schätzen: (129 134 122) 3 128.333. Basierend auf dem Umsatz von Januar bis März, Sie prognostizieren, dass der Umsatz im April 128,333 werden. Sobald April8217s tatsächliche Verkäufe hereinkommen, würden Sie dann die Prognose für Mai berechnen, dieses mal using Februar bis April. Sie müssen mit der Anzahl der Perioden übereinstimmen, die Sie für die gleitende durchschnittliche Prognose verwenden. Die Anzahl der Perioden, die Sie in Ihren gleitenden durchschnittlichen Prognosen verwenden, sind beliebig, Sie können nur zwei Perioden verwenden, oder fünf oder sechs Perioden, was auch immer Sie Ihre Prognosen generieren möchten. Der oben genannte Ansatz ist ein einfacher gleitender Durchschnitt. Manchmal können jüngere Monate8217 Verkäufe stärkere Einflussfaktoren des kommenden Monats8217s Verkäufe sein, also möchten Sie jene Annäherungsmonate mehr Gewicht in Ihrem Vorhersagemodell geben. Dies ist ein gewichteter gleitender Durchschnitt. Und genau wie die Anzahl der Perioden sind die Gewichte, die Sie zuweisen, rein willkürlich. Let8217s sagen, Sie wollten geben March8217s Umsatz 50 Gewicht, Februar8217s 30 Gewicht und Januar8217s 20. Dann wird Ihre Prognose für April 127.000 (122.50) (134.30) (129.20) 127 sein. Einschränkungen gleitender Durchschnittsmethoden Gleitende Mittelwerte werden als 8220smoothing8221 Prognosetechnik betrachtet. Weil Sie einen Durchschnitt im Laufe der Zeit nehmen, sind Sie die Erweichung (oder Glättung) der Auswirkungen von unregelmäßigen Ereignissen innerhalb der Daten. Folglich können die Auswirkungen von Saisonalität, Konjunkturzyklen und anderen zufälligen Ereignissen den Prognosefehler drastisch erhöhen. Werfen Sie einen Blick auf ein vollständiges year8217s Wert von Daten, und vergleichen Sie einen 3-Perioden gleitenden Durchschnitt und einen 5-Perioden gleitenden Durchschnitt: Beachten Sie, dass in diesem Fall, dass ich keine Prognosen erstellt, sondern zentriert die gleitenden Durchschnitte. Die ersten dreimonatigen gleitenden Durchschnitt ist für Februar, und es8217s der Durchschnitt von Januar, Februar und März. Ich habe auch ähnlich für die 5-Monats-Durchschnitt. Nun, werfen Sie einen Blick auf die folgende Tabelle: Was sehen Sie, ist nicht die dreimonatige gleitende durchschnittliche Reihe viel glatter als die tatsächlichen Verkaufsreihen Und wie über die Fünf-Monats-gleitenden Durchschnitt It8217s sogar glatter. Daher, je mehr Zeiträume Sie in Ihrem gleitenden Durchschnitt verwenden, desto glatter Ihre Zeitreihen. Daher kann für die Prognose ein einfacher gleitender Durchschnitt nicht die genaueste Methode sein. Gleitende Durchschnittsmethoden erweisen sich als sehr wertvoll, wenn Sie versuchen, die saisonalen, unregelmäßigen und zyklischen Komponenten einer Zeitreihe für fortgeschrittene Prognosemethoden, wie Regression und ARIMA, zu extrahieren und die Verwendung von gleitenden Mittelwerten bei der Zerlegung einer Zeitreihe wird später behandelt in der Serie. Bestimmen der Genauigkeit eines gleitenden Durchschnittsmodells Im Allgemeinen möchten Sie eine Prognosemethode, die den geringsten Fehler zwischen tatsächlichen und vorhergesagten Ergebnissen aufweist. Eine der häufigsten Maßnahmen der Prognosegenauigkeit ist die Mean Absolute Deviation (MAD). Bei dieser Vorgehensweise nehmen Sie für jede Periode in der Zeitreihe, für die Sie eine Prognose erstellt haben, den absoluten Wert der Differenz zwischen dem aktuellen und dem prognostizierten Wert (die Abweichung). Dann durchschnittst du diese absoluten Abweichungen und du erhältst ein Maß von MAD. MAD kann hilfreich bei der Entscheidung über die Anzahl der Perioden, die Sie durchschnittlich, und die Menge des Gewichts, die Sie auf jeder Periode. Im Allgemeinen wählen Sie die eine, die in der niedrigsten MAD resultiert. Hier ist ein Beispiel dafür, wie MAD berechnet wird: MAD ist einfach der Durchschnitt von 8, 1 und 3. Moving Averages: Recap Bei der Verwendung von Moving Averages für die Prognose, denken Sie daran: Moving Durchschnitte können einfach oder gewichtet werden Die Anzahl der Perioden, die Sie für Ihre verwenden Durchschnittlich und alle Gewichte, die Sie jedem zuweisen, sind streng beliebig Bewegungsdurchschnitte glatt machen unregelmäßige Muster in Zeitreihen-Daten, je größer die Anzahl der Perioden für jeden Datenpunkt verwendet, desto größer ist der Glättungseffekt Wegen der Glättung, Prognose nächsten Monat8217s Umsatz auf der Grundlage der Die jüngsten monatlichen Verkäufe können zu großen Abweichungen aufgrund saisonaler, zyklischer und unregelmäßiger Muster in den Daten führen. Die Glättungsfunktionen einer gleitenden Durchschnittsmethode können beim Zerlegen einer Zeitreihe für fortgeschrittene Prognosemethoden nützlich sein. Nächste Woche: Exponentielle Glättung In der nächsten Woche8217s Vorhersage Freitag. Werden wir diskutieren exponentielle Glättung Methoden, und Sie werden sehen, dass sie weit überlegen, gleitende durchschnittliche Prognose Methoden. Immer noch don8217t wissen, warum unsere Forecast Freitag Beiträge erscheinen am Donnerstag Find out at: tinyurl26cm6ma So: Post navigation Lassen Sie eine Antwort Antworten abbrechen Ich hatte 2 Fragen: 1) Können Sie die zentrierte MA Ansatz zur Prognose oder nur für die Beseitigung Saisonalität 2) Wann Verwenden Sie die einfache t (t-1t-2t-k) k MA Prognose einer Periode voraus, ist es möglich, prognostizieren mehr als 1 Periode voraus Ich denke, dann Ihre Prognose wäre einer der Punkte Fütterung in den nächsten. Vielen Dank. Liebe die Infos und Ihre Erklärungen I8217m froh, dass Sie den Blog I8217m sicher mehrere Analytiker haben die zentrierte MA-Ansatz für die Prognose verwendet haben, aber ich persönlich würde nicht, da dieser Ansatz führt zu einem Verlust von Beobachtungen an beiden Enden. Das bindet dann tatsächlich Ihre zweite Frage. Im Allgemeinen wird einfaches MA verwendet, um nur eine Periode vorher zu prognostizieren, aber viele Analytiker 8211 und ich auch manchmal 8211 benutzen meine Einperiode voraus Prognose als einer der Eingaben zur zweiten Periode voran. Es ist wichtig, sich daran zu erinnern, dass je weiter in die Zukunft Sie zu prognostizieren versuchen, desto größer ist das Risiko von Prognosefehler. Dies ist der Grund, warum ich nicht empfehlen zentrierte MA für die Vorhersage 8211 der Verlust der Beobachtungen am Ende bedeutet, dass auf Prognosen für die verlorenen Beobachtungen sowie die Periode (n) voraus zu verlassen, so gibt es größere Chance auf Prognosefehler. Leser: you8217re eingeladen, wiegen in diesem. Haben Sie irgendwelche Gedanken oder Anregungen zu diesem Brian, danke für Ihren Kommentar und Ihre Komplimente auf dem Blog Schöne Initiative und schöne Erklärung. It8217s wirklich nützlich. Ich prognostiziere benutzerdefinierte Leiterplatten für einen Kunden, der keine Prognosen gibt. Ich habe den gleitenden Durchschnitt verwendet, aber es ist nicht sehr genau, da die Industrie auf und ab gehen kann. Wir sehen in Richtung Mitte des Sommers bis zum Ende des Jahres, dass Versand pcb8217s ist. Dann sehen wir am Anfang des Jahres langsam nach unten. Wie kann ich genauer mit meinen Daten Katrina, von dem, was Sie mir gesagt haben, scheint es, dass Ihre Leiterplatten Verkauf haben eine saisonale Komponente. Ich weiß, Adresse Saisonalität in einigen der anderen Forecast Friday Posts. Ein anderer Ansatz, den Sie verwenden können, ist ziemlich einfach der Holt-Winters-Algorithmus, der die Saisonalität berücksichtigt. Hier finden Sie eine gute Erklärung. Achten Sie darauf, festzustellen, ob Ihre saisonalen Muster sind multiplikativ oder additiv, weil der Algorithmus ist etwas anders für jeden. Wenn Sie Ihre monatlichen Daten von wenigen Jahren abbilden und sehen, dass die saisonalen Schwankungen zu gleichen Zeitpunkten im Jahresverlauf konstant zu sein scheinen, dann ist die Saisonalität additiv, wenn die saisonalen Schwankungen im Laufe der Zeit zu steigen scheinen, dann ist die Saisonalität Multiplikativ. Die meisten saisonalen Zeitreihen werden multiplikativ sein. Im Zweifelsfall multiplikativ voraussetzen. Viel Glück Hi there, Zwischen diesen Methoden:. Nave Vorhersage. Aktualisieren des Mittelwerts. Gleitender Durchschnitt der Länge k. Entweder gewichtet Bewegt Durchschnitt der Länge k OR Exponentielle Glättung Welches eines jener Aktualisierung Modelle empfehlen Sie mir mit der Prognose der Daten Für meine Meinung, denke ich über Moving Average. Aber ich weiß nicht, wie es klar und strukturiert ist. Es hängt wirklich von der Menge und Qualität der Daten, die Sie haben, und Ihrem Prognosehorizont (langfristig, mittelfristig oder kurzfristig) 2.3 Einige einfache Prognosemethoden beer2 lt - Fenster 40 ausbeer, start 1992. ende 2006 - .1 41 beerfit1 lt - meanf 40 beer2, h 11 41 beerfit2 lt - naive 40 beer2, h 11 41 beerfit3 lt - snaive 40 beer2, h 11 41 grundstück 40 beerfit1, grundstuck. Conf FALSE, main quotForecasts für vierteljährliche Bierproduktion 41 Zeilen 40 beerfit2mean, col 2 41 Zeilen 40 beerfit3mean, col 3 41 Legende 40 quottoprightquot, lty 1. col c 40 4. 2. 3 41, Legende c 40 quotMean methodquot. QuotNaive Methodenquot. In Abbildung 2.14 wurden die nicht saisonalen Methoden auf eine Reihe von 250 Tagen des Dow Jones Index angewendet. Dj2 lt - fenster 40 dj, ende 250 41 plot 40 dj2, hauptdialog JDDow Jones Index (täglich endet am 15. juli 94), ylab quotquot, xlab quotDayquot, xlim c 40 2. 290 41 41 zeilen 40 mittel 40 dj2, h 42 41 Mittel, col 4 41 Zeilen 40 rwf 40 dj2, h 42 41 Mittelwert, col 2 41 Zeilen 40 rwf 40 dj2, Drift TRUE, h 42 41 Durchschnitt, col 3 41 Legende 40 quottopleftquot, lty 1. col c 40 4. 2. 3 41, Legende c 40 quotMean Methodequot. QuotNaive Methodenquot. QuotDrift methodquot 41 41 Manchmal ist eine dieser einfachen Methoden die beste verfügbare Prognosemethode. Aber in vielen Fällen werden diese Methoden als Benchmarks anstelle der Methode der Wahl dienen. Das heißt, unabhängig von den Prognosemethoden, die wir entwickeln, werden sie mit diesen einfachen Methoden verglichen, um sicherzustellen, dass die neue Methode besser ist als diese einfachen Alternativen. Wenn nicht, ist die neue Methode nicht zu überlegen.
No comments:
Post a Comment