Tuesday, 12 September 2017

Durchschnittlicher Quellcode Verschieben


Moving Average Der Moving Average Technical Indicator zeigt den durchschnittlichen Instrumentenpreis für einen bestimmten Zeitraum an. Wenn man den gleitenden Durchschnitt berechnet, berechnet man den Instrumentenpreis für diesen Zeitraum. Wenn sich der Preis ändert, steigt oder fällt sein gleitender Durchschnitt. Es gibt vier verschiedene Arten von gleitenden Durchschnitten: Einfach (auch als Arithmetik bezeichnet), Exponential. Geglättet und gewichtet. Der gleitende Durchschnitt kann für jeden sequentiellen Datensatz berechnet werden, einschließlich der Eröffnungs - und Schlusskurse, der höchsten und niedrigsten Preise, des Handelsvolumens oder anderer Indikatoren. Es ist oft der Fall, wenn doppelte gleitende Durchschnitte verwendet werden. Das Einzige, wo sich verschie - dende Durchschnittswerte verschiedener Typen erheblich voneinander unterscheiden, ist, wenn Gewichtskoeffizienten, die den letzten Daten zugeordnet sind, unterschiedlich sind. Falls wir von Simple Moving Average sprechen. Alle Preise des fraglichen Zeitraums gleich sind. Exponential Moving Average und Linear Weighted Moving Average legen mehr Wert auf die neuesten Preise. Der gängigste Weg zur Interpretation des gleitenden Durchschnitts ist es, seine Dynamik mit der Preisaktion zu vergleichen. Wenn der Instrumentenpreis über seinem gleitenden Durchschnitt ansteigt, erscheint ein Kaufsignal, wenn der Kurs unter den gleitenden Durchschnitt fällt, was wir haben, ist ein Verkaufssignal. Dieses handelnde System, das auf dem gleitenden Durchschnitt basiert, ist nicht entworfen, um Eintritt in den Markt direkt in seinem niedrigsten Punkt und seinem Ausgang direkt auf dem Höhepunkt zur Verfügung zu stellen. Es erlaubt, nach dem folgenden Trend zu handeln: bald zu kaufen, nachdem die Preise den Boden zu erreichen, und zu verkaufen, bald nachdem die Preise ihren Höhepunkt erreicht haben. Bewegungsdurchschnitte können auch auf Indikatoren angewendet werden. Das ist, wo die Interpretation der Indikatorbewegungsdurchschnitte ähnlich der Interpretation der Preisbewegungsdurchschnitte ist: wenn der Indikator über seinem gleitenden Durchschnitt steigt, bedeutet das, dass die aufsteigende Indikatorbewegung wahrscheinlich fortfährt: wenn der Indikator unter seinen gleitenden Durchschnitt fällt, dieses Bedeutet, dass es wahrscheinlich weiter nach unten gehen wird. Hier sind die Arten von gleitenden Durchschnittswerten im Diagramm: Einfacher Moving Average (SMA) Exponentieller Moving Average (EMA) Glatter Moving Average (SMMA) Linearer Gewichteter Moving Average (LWMA) Sie können die Handelssignale dieses Indikators testen, indem Sie einen Expertenratgeber erstellen Im MQL5-Assistenten. Berechnung Einfacher gleitender Mittelwert (SMA) Ein einfacher, dh arithmetisch gleitender Durchschnitt wird berechnet, indem die Preise des Instrumentenschlusses über eine bestimmte Anzahl von Einzelperioden (z. B. 12 Stunden) zusammengefasst werden. Dieser Wert wird dann durch die Anzahl dieser Perioden dividiert. SMA SUM (CLOSE (i), N) N SUM Summe CLOSE (i) aktuelle Periode enge Preis N Anzahl der Berechnungsperioden. Exponential Moving Average (EMA) Der exponentiell geglättete gleitende Durchschnitt wird durch Addition eines bestimmten Anteils des aktuellen Schlusskurses zum vorherigen Wert des gleitenden Durchschnitts berechnet. Bei exponentiell geglätteten gleitenden Durchschnitten sind die letzten engen Preise von mehr Wert. P-Prozentsatz exponentieller gleitender Durchschnitt wird folgendermaßen aussehen: EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) CLOSE (i) Einer vorherigen Periode P den Prozentsatz der Verwendung des Preiswertes. Gleitender gleitender Mittelwert (SMMA) Der erste Wert dieses geglätteten gleitenden Mittelwertes wird als einfacher gleitender Mittelwert (SMA) berechnet: SUM1 SUM (CLOSE (i), N) Der zweite gleitende Durchschnitt wird gemäß dieser Formel berechnet: SMMA (i) (I - 1) N SMMA (i) (PREVSUM - SMMA (i - 1) SCHLIESSEN (i)) N Nachfolgende gleitende Mittelwerte werden nach folgender Formel berechnet: N SUM Summe SUM1 Summe der Schlusskurse für N Perioden wird von der vorherigen Bar gezählt PREVSUM geglättete Summe der vorherigen Bar SMMA (i-1) geglättetes gleitendes Mittel der vorherigen Bar SMMA (i) geglättetes gleitendes Mittel der aktuellen Bar (Außer für die erste) SCHLIESSEN (i) gegenwärtig nahe Preis N Glättungsperiode. Nach arithmetischen Umrechnungen kann die Formel vereinfacht werden: SMMA (i) (SMMA (i - 1) (N - 1) CLOSE (i)) N Linearer gewichteter gleitender Durchschnitt (LWMA) Von mehr Wert als mehr frühe Daten. Der gewichtete gleitende Durchschnitt wird berechnet, indem jeder der Schlusskurse innerhalb der betrachteten Reihe mit einem gewissen Gewichtskoeffizienten multipliziert wird: LWMA SUM (CLOSE (i) i, N) SUM (i, N) SUM Summe CLOSE (i) aktueller Schlusskurs SUM (i, N) Gesamtsumme der Gewichtskoeffizienten N Glättungszeitraum. MetaTrader 4 - Experts Moving Average - Experte für MetaTrader 4 Der Moving Average Experte für die Bildung von Handelssignalen verwendet einen gleitenden Durchschnitt. Das Öffnen und Schließen von Positionen erfolgt, wenn der gleitende Durchschnitt den Preis an der kürzlich gebildeten Bar erfüllt (Barindex entspricht 1). Die Losgröße wird nach einem speziellen Algorithmus optimiert. Der Gutachter analysiert die Übereinstimmung zwischen dem gleitenden Durchschnitt und dem Marktpreisdiagramm. Die Überprüfung wird von der Funktion CheckForOpen () durchgeführt. Wenn der gleitende Durchschnitt auf die Bar trifft, so dass ersterer höher ist als der offene Preis, aber niedriger als der Schlusskurs, wird die BUY-Position geöffnet. Wenn der gleitende Durchschnitt auf die Bar trifft, so dass ersterer niedriger ist als der offene Preis, aber höher als der Schlusskurs, wird die SELL-Position geöffnet. Das im Experten verwendete Money Management ist sehr einfach, aber effektiv: Die Kontrolle über jedes Positionsvolumen wird in Abhängigkeit von den bisherigen Transaktionsergebnissen durchgeführt. Dieser Algorithmus wird durch die Funktion LotsOptimized () implementiert. Die Basis-Losgröße wird auf Basis des maximal zulässigen Risikos berechnet: Der Parameter MaximumRisk zeigt für jede Transaktion den Grundrisikoprozentsatz an. Sie besitzt üblicherweise einen Wert zwischen 0,01 (1) und 1 (100). Wenn beispielsweise die freie Marge (AccountFreeMargin) 20.500 beträgt und die Regeln des Kapitalmanagements das Risiko von 2 verwenden, wird die Grundlosgröße 20500 0,02 1000 0,41 betragen. Es ist sehr wichtig, die Losgrößengenauigkeit zu kontrollieren und das Ergebnis mit den zulässigen Werten zu normalisieren. Normalerweise sind Fraktionen mit einer Stufe von 0,1 erlaubt. Eine Transaktion mit einem Volumen von 0,41 wird nicht durchgeführt. Zur Normalisierung wird die NormalizeDouble () - Funktion mit Genauigkeit bis zu einem Zeichen nach dem Punkt verwendet. Dies führt zu der Grundmenge von 0,4. Die Basispreisberechnung auf Basis der freien Marge erlaubt es, die Betriebsvolumina je nach Handelserfolg zu erhöhen, d. h. den Handel mit Reinvestitionen zu handeln. Dies ist der grundlegende Mechanismus mit obligatorischem Kapitalmanagement zur Steigerung der Effizienz des Handels. DecreaseFactor ist das Ausmaß, in dem die Losgröße nach dem unrentablen Handel reduziert wird. Normale Werte sind 2,3,4,5. Wenn die vorhergehenden Transaktionen unrentabel waren, verringern sich die nachfolgenden Volumina um einen Faktor von DecreaseFactor, um durch die unrentable Periode zu warten. Dies ist der Hauptfaktor im Kapitalmanagementalgorithmus. Die Idee ist sehr einfach: Wenn der Handel erfolgreich wächst, arbeitet der Experte mit dem Grundposten, der maximalen Profit macht. Nach der ersten unrentablen Transaktion wird der Experte die Geschwindigkeit reduzieren, bis eine neue positive Transaktion erfolgt. Der Algorithmus erlaubt es, die Geschwindigkeitsreduzierung zu deaktivieren, dafür muss man DecreaseFactor 0 angeben. Die Höhe der letzten aufeinanderfolgenden unrentablen Transaktionen wird in der Handelsgeschichte berechnet. Das Basislos wird auf dieser Basis neu berechnet: Der Algorithmus erlaubt es also, das durch eine Reihe von unrentablen Transaktionen auftretende Risiko effektiv zu reduzieren. Die Losgröße wird am Ende der Funktion obligatorisch auf die minimal zulässige Losgröße überprüft Können die zuvor durchgeführten Berechnungen zu Los 0 führen: Der Experte ist hauptsächlich für den täglichen Arbeitsablauf und im Testbetrieb bestimmt - für die Durchführung zu engen Preisen. Es wird nur beim Öffnen einer neuen Bar handeln, deshalb werden die Modi der Tick-Modellierung nicht benötigt. Ich habe im Wesentlichen ein Array von Werten wie diese: Das obige Array ist vereinfacht, Im sammeln 1 Wert pro Millisekunde in meinem realen Code und ich muss die Ausgabe auf einem Algorithmus, den ich schrieb, um die am nächsten zu finden verarbeiten Peak vor einem Zeitpunkt. Meine Logik schlägt fehl, weil in meinem Beispiel oben 0.36 die wahre Spitze ist, aber mein Algorithmus würde rückwärts schauen und sehen die sehr letzte Zahl 0.25 als die Spitze, als theres eine Abnahme zu 0.24 vor ihm. Das Ziel ist, diese Werte zu nehmen und einen Algorithmus auf sie, die glätten sie ein wenig, so dass ich mehr lineare Werte. (Dh: Id wie meine Ergebnisse curvy, nicht jaggedy) Ive wurde gesagt, um einen exponentiellen gleitenden durchschnittlichen Filter auf meine Werte anzuwenden. Wie kann ich dies tun Es ist wirklich schwer für mich, mathematische Gleichungen zu lesen, gehe ich viel besser mit Code. Wie verarbeite ich Werte in meinem Array, die Anwendung einer exponentiellen gleitenden Durchschnittsberechnung, um sie herauszufordern, um einen exponentiellen gleitenden Durchschnitt zu berechnen. Müssen Sie einige Zustand zu halten und Sie benötigen einen Tuning-Parameter. Dies erfordert eine kleine Klasse (vorausgesetzt, Sie verwenden Java 5 oder höher): Instantiate mit dem Decay-Parameter, die Sie wollen (kann Abstimmung sollte zwischen 0 und 1) und dann mit Average () zu filtern. Beim Lesen einer Seite auf einige mathematische Rekursion, alles, was Sie wirklich wissen müssen, wenn Sie es in Code ist, dass Mathematiker gerne Indizes in Arrays und Sequenzen mit Indizes schreiben. (Theyve einige andere Anmerkungen außerdem, die nicht helfen.) Jedoch ist die EMA ziemlich einfach, da Sie nur an einen alten Wert erinnern müssen, der keine komplizierten Zustandarrays erfordert. Beantwortet Feb 8 12 at 20:42 TKKocheran: Ziemlich viel. Isn39t es schön, wenn die Dinge einfach sein können (Wenn Sie mit einer neuen Sequenz beginnen, erhalten Sie einen neuen Mittelwert.) Beachten Sie, dass die ersten paar Begriffe in der durchschnittlichen Sequenz wird ein bisschen durch Randeffekte springen, aber Sie erhalten die mit anderen gleitenden Durchschnitten auch. Allerdings ist ein guter Vorteil, dass Sie die gleitende durchschnittliche Logik in die Mittelung einwickeln und experimentieren können, ohne den Rest des Programms zu viel zu stören. Ndash Donal Fellows Ich habe eine harte Zeit, Ihre Fragen zu verstehen, aber ich werde versuchen, trotzdem zu beantworten. 1) Wenn Ihr Algorithmus 0,25 statt 0,36 gefunden hat, dann ist es falsch. Es ist falsch, weil es eine monotone Zunahme oder Abnahme (das ist immer nach oben oder immer nach unten). Wenn Sie ALLE Ihre Daten nicht klassifizieren, sind Ihre Datenpunkte - wie Sie sie darstellen - nichtlinear. Wenn Sie wirklich den maximalen Wert zwischen zwei Zeitpunkten finden wollen, dann schneiden Sie Ihr Array von tmin zu tmax und finden Sie das Maximum dieses Unterarrays. 2) Nun ist das Konzept der gleitenden Durchschnitte sehr einfach: vorstellen, dass ich die folgende Liste haben: 1.4, 1.5, 1.4, 1.5, 1.5. Ich kann es glätten, indem ich den Durchschnitt von zwei Zahlen: 1.45, 1.45, 1.45, 1.5. Beachten Sie, dass die erste Zahl ist der Durchschnitt von 1,5 und 1,4 (zweite und erste Zahlen) die zweite (neue Liste) ist der Durchschnitt von 1,4 und 1,5 (dritte und zweite alte Liste) die dritte (neue Liste) der Durchschnitt von 1,5 und 1,4 (Vierte und dritte), und so weiter. Ich könnte es Zeitraum drei oder vier gemacht haben, oder n. Beachten Sie, wie die Daten viel glatter sind. Ein guter Weg, um zu sehen, gleitende Durchschnitte bei der Arbeit ist, gehen Sie zu Google Finance, wählen Sie eine Aktie (versuchen Tesla Motors ziemlich volatil (TSLA)) und klicken Sie auf Technische Daten am unteren Rand des Diagramms. Wählen Sie Moving Average mit einer bestimmten Periode und Exponential gleitenden Durchschnitt, um ihre Differenzen zu vergleichen. Exponentielle gleitende Durchschnitt ist nur eine weitere Ausarbeitung dieser, aber Gewichte die älteren Daten weniger als die neuen Daten ist dies ein Weg, um die Glättung nach hinten auszugleichen. Bitte lesen Sie den Wikipedia-Eintrag. Also, dies ist eher ein Kommentar als eine Antwort, aber die kleine Kommentar-Box war nur zu klein. Viel Glück. Wenn Sie Probleme mit der Mathematik haben, könnten Sie mit einem einfachen gleitenden Durchschnitt statt exponentiell gehen. Also die Ausgabe erhalten Sie die letzten x-Terme durch x geteilt werden. Ungetestetes Pseudocode: Beachten Sie, dass Sie die Anfangs - und Endteile der Daten behandeln müssen, da deutlich, dass Sie die letzten 5 Ausdrücke nicht durchschnittlich sind, wenn Sie an Ihrem 2. Datenpunkt sind. Außerdem gibt es effizientere Methoden, diesen gleitenden Durchschnitt zu berechnen (Summe - älteste neueste), aber dies ist, um das Konzept von dem, was passiert ist, zu bekommen. Beantwortet Feb 8 12 at 20:41 Deine Antwort 2017 Stack Exchange, Inc

No comments:

Post a Comment